
DRAFT: The Hierarchical Module Namespace Extension,

version 0.0

An Addendum to the Haskell 98 Report

Simon Marlow, Microsoft Research, Cambridge
Malcolm Wallace, University of York

Copyright (c) 2003 Simon Marlow
The authors intend this Report to belong to the entire Haskell community, and so we grant per-
mission to copy and distribute it for any purpose, provided that it is reproduced in its entirety,
including this Notice. Modified versions of this Addendum may also be copied and distributed for
any purpose, provided that the modified version is clearly presented as such, and that it does not
claim to be a definition of The Haskell 98 Hierarchical Module Namespace Extension.

The master version of Hierarchical Module Namespace Extension is at haskell.org. Any correc-
tions or changes in the report are found there.





Preface

Haskell 98 defines a module system with a flat module namespace. That is, module names are
just identifiers, and all module names occupy the same namespace. This creates two problems for
the Haskell programmer:

� There is no consistent naming scheme for modules, so it is hard to locate functionality within
a library.

� Module names are likely to clash with each other. It is not possible to choose a module name
for a library that is guaranteed not to clash with other library modules.

The purpose of this document is to define a modest extension to Haskell 98 that extends the
module namespace and gives it a hierarchical structure.

On the face of it, this extension solves neither of the above two problems! However, it is an
important first step: in having a way to arrange modules into a hierarchy, we have a mechanism
to avoid name clashes, and a way to organise libraries into a tree by functionality. The policy by
which the hierarchy itself is organised is not in the scope of this specification, but we expect it to
be the subject of future specification(s).

This document is an addendum to the Haskell 98 definition, which means that it has undergone
extensive peer-review by the Haskell community prior to publication1.

The hierarchical module namespace extension depends on no other Haskell 98 extensions.

Acknowledgements

We would like to thank everyone on the mailing list libraries@haskell.org who has contributed
in some way to this proposal, and also those Haskell system implementors who have added this
extension to their compilers and interpreters.

1or at least it will have done, by the time version 1.0 is published

i





1 The Language Extension

The key concept is to map the module namespace into a hierarchical directory-like structure. We
propose using the dot as a separator, analogous to Java’s usage for namespaces.

This is a surface change to the module naming convention. It does not introduce nested
definition of modules. One change is required to the lexical syntax of Haskell, namely that modid
is redefined from:

modid → conid

to:

modid → qconid

for reference, the definition of qconid is:

qconid → [modid.]conid

Note that the new syntax is recursive, a modid may contain multiple components separated by
dots, where the final component is a conid.

A consequence of using the dot as the module namespace separator is that it steals one ex-
tremely rare construction from Haskell 98:

A.B.C.D

in Haskell’98 means the composition of constructor D from module C, with constructor B from
module A:

(.) A.B C.D

With the hierarchical module namespace extension, A.B.C.D would instead be interpreted as the
identifier D from module A.B.C. If the original Haskell 98 interpretation is intended, then it must
be written with extra spaces, as A.B . C.D.

2 Modules and the filesystem

This section describes possible implementation techniques, and how we expect the hierarchical
namespace to be exposed to the programmer by Haskell implementations. What follows is not
part of the specification of the hierarchical module namespace extension; Haskell implementations
are still free to implement any mapping between modules and filenames they choose (as in plain
Haskell 98).

For most compilers and interpreters, we expect that the hierarchical module namespace will
map directly to a directory/file structure in which the modules are stored. For example, a module
Foo.Bar.Baz might be stored in the file Foo/Bar/Baz.hs if / is the directory separator.

Note that the hierarchical module namespace is far simpler than a file directory structure, in
that hierarchical module names do not provide any operations such as relative paths or parent
directory.

In the hierarchical module namespace, a particular module name may also be a node in the
hierarchy. For example, we might have modules names both Data.Array and Data.Array.IO. It
is therefore important that directories are distinguished form Haskell source modules, for example
by using the .hs suffix: Data.Array would be stored in Data/Array.hs and Data.Array.IO in
Data/Array/IO.hs.

1


